Universality in Mean Curvature Flow Neckpinches
نویسندگان
چکیده
We study noncompact surfaces evolving by mean curvature flow. Without any symmetry assumptions, we prove that any solution that is C3close at some time to a standard neck will develop a neckpinch singularity in finite time, will become asymptotically rotationally symmetric in a space-time neighborhood of its singular set, and will have a unique tangent flow.
منابع مشابه
Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow
We study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are C3-close to round, but without assuming rotational symmetry or positive mean curvature, we show that mcf solutions become singular in finite time by forming neckpinches, and we obtain detailed asymptotics of that singularity formation. Our results show in a precise way that mcf solutions...
متن کاملFormal matched asymptotics for degenerate Ricci flow neckpinches
Gu and Zhu [16] have shown that Type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on Sn+1 (n ≥ 2). In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit.
متن کاملDegenerate Neckpinches in Ricci Flow
In earlier work [2], we derived formal matched asymptotic profiles for families of Ricci flow solutions developing Type-II degenerate neckpinches. In the present work, we prove that there do exist Ricci flow solutions that develop singularities modeled on each such profile. In particular, we show that for each positive integer k ≥ 3, there exist compact solutions in all dimensions m ≥ 3 that be...
متن کاملLimits of Embedded Graphs and Universality Conjectures for the Network Flow
We define notions of local topological convergence and local geometric convergence for embedded graphs in R, and study their properties. The former is related to BenjaminiSchramm convergence, and the latter to weak convergence of probability measures with respect to a certain topology on the space of embedded graphs. These are used to state universality conjectures for the long-term behavior of...
متن کاملMinimally Invasive Surgery for Ricci Flow Singularities
In this paper, we construct smooth forward Ricci flow evolutions of singular initial metrics resulting from rotationally symmetric neckpinches on Sn+1, without performing an intervening surgery. In the restrictive context of rotational symmetry, this construction gives evidence in favor of Perelman’s hope for a “canonically defined Ricci flow through singularities”.
متن کامل